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1 Extreme value distributions
Extreme value distributions are limiting distributions for extreme values (maximums or
minimums) of a sample of independent and identically distributed (i.i.d) random variables
as the sample size increases (Kotz and Nadarajah, 2000). The extreme value distributions
can be based either on the smallest extreme or the largest extreme. We used extreme
value distributions to model mGSZ and mGSA scores. Both mGSZ and mGSA scores
are maximum values from a group of data. For that reason, we will focus mainly on the
extreme value distribution based on the largest extreme. The class of Extreme Value
Distributions involves three types of extreme value distributions, type I, type II and type
III.

1.1 Extreme value type I distribution

The extreme value type I distribution is also referred to as the Gumbel distribution. The
probability density function of the extreme value type I distribution is,

f(x) =
1

β
e−

(x−µ)
β e−e

− (x−µ)
β (1)

The cumulative distribution function of the extreme value type I distribution is,

F (x) = e−e
−(x−µ)/β

(2)
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where, µ is the location parameter and β > 0 is the scale parameter. Standard extreme
value type I distribution has µ = 0 and β = 1.

1.2 Extreme value type II distribution

Extreme value type II distribution is also referred as to Fréchet distribution. The proba-
bility density function of the extreme value type II distribution is,

f(x) =
a

β

(
x− µ
β

)−1−a
e−

x−µ
β
−a (3)

The cumulative distribution function of the extreme value type II distribution is,

F (x) = e−
x−µ
β
−a (4)

where, µ is the location parameter, β is the scale parameter and a is the shape pa-
rameter.

1.3 Extreme value type III distribution

Extreme value type III distribution is also called as Weibull distribution. The probability
density function of the extreme value type III distribution is,

f(x) =


a
β

(
x
β

)a−1
e−(x/β)

a
x ≥ 0

0 x < 0

The cumulative distribution function of the extreme value type III distribution is,

F (x) =


1− e−(x/β)a x ≥ 0

0 x < 0

where, µ > 0 is the location parameter, β > 0 is the scale parameter and a is the
shape parameter.

1.4 General extreme value distribution

General extreme value distribution (GEVD) combines the extreme value type I, II and
III distributions. The probability density function of the GEVD is,
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f(x) =


1
β
e(−(1 + az)−

1
a )(1 + az)−1−1/a a 6= 0

1
β
e(−z − e(−z)) a = 0

The cumulative distribution function is,

F (x) =


e(−(1 + az)−1/a) a 6= 0

e(−e(−z)) a = 0

where, z = (x - µ)/β and a, β, µ are shape, scale and location parameters respectively.
The scale must be positive, the shape and location can take on any real value.

2 Series expansion for p-value calculation from EVD
and GEVD

Log p-values from EVD and GEVD are calculated as,

F (x) = −log(p-valueEVD) = −ln(1− e−e
x

) (5)

where,

x = −(z − µ)/β (6)

z is the absolute mGSZ or mGSA score value for the analyzed gene set and µ and β
are location and scale parameters respectively for EVD.

and

G(x) = −log(p-valueGEVD) = −ln
(
1− e−(1+ax)

−1/a
)
, a > 0 (7)

where,

x = (z − µ)/β (8)
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z is the absolute mGSZ or mGSA score value for the analyzed gene set and µ, β and
a are the location, scale and shape parameters respectively for GEVD.

We used two well known power series expansions for calculation of extremely small
p-values from EVD and GEVD, namely

e−t = 1− t+ t2/2− t3/6 + t4/24 + . . . (9)

and

ln(1 + t) = t− t2/2 + t3/3− t4/4 + . . . (10)

Both expansions converge rapidly when |t| is reasonably small.
Now, F (x) and G(x) are essentially of the similar form p(t) = ln(1 − e−t), so we

shall start by finding the power series expansion for p(t) near t = 0. Applying the first
expansion above for the exponential function, the rule for the logarithm of a product
ln(ab) = ln(a) ln(b), and finally the second expansion with t equalling the whole power
series that remains inside the logarithmic function in addition to the constant term 1, we
get for our auxialiary function p(t) the result

p(t) = ln(t)− t/2 + t2/24− t4/2880 + t6/181440 + . . . (11)

To get the series expansion for function F (x), we replace t in p(t) by ex. We shall apply
the resulting series for large negative values of x, which means that the series converges
rapidly. Taking into account the minus sign in the definition of F (x) we end up with the
expansion:

F s(x) = −x+ ex/2− e2x/24 + e4x/2880− e6x/181440 + . . . (12)

This result shows us that when x→ −∞, the value of F s(x) approaches−xmonotonously
from above, the difference being of order ex/2.

In a completely analogous fashion it can be shown that for the function G(x) the
corresponding expansion takes the form

Gs(x) =
ln(1 + ax)

a
+

(1 + ax)−1/a

2
− (1 + ax)−2/a

24

+
(1 + ax)−4/a

2880
− (1 + ax)−6/a

181440
− . . . (13)

With x → ∞, function Gs(x) approaches −(ln(1 + ax))/a from below, and for large
values of x, the difference is of order ((1 + ax)−1/a)/2.

3 Schematic representation of mGSZ
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Figure 1: Schematic representation of mGSZ workflow. mGSZ takes differential gene
expression test scores and list or matrix of gene sets as input. The gene list with differential
gene expression test scores is (a) ordered based on differential gene expression test scores.
Subsets of genes are taken at threshold positions placed in between every consecutive
pair of genes, and for each subset (b) the difference between the sum of differential gene
expression test scores for the member and non-member genes of the analyzed gene set
is calculated, the calculated difference is (c) normalized with the estimates of mean and
standard deviation, and (d) the largest absolute value is selected as the GSZ score for
the analyzed gene set. The steps (a), (b), (c) and (d) is repeated with differential gene
expression test scores from permuted (sample permutation) gene expression data. (h)
Asymptotic distribution model is fitted to the GSZ scores from permuted gene expression
data. (i) Asymptotic p-value is calculated for the analyzed gene set.

4 Evaluation of the p-value calculation methods with
p53 data

In this section, we evaluate asymptotic and empirical methods of p-value estimation.
Mean and standard deviation of the gene set scores were adjusted to 0 and 1 respectively
for all but GAMMA p-value estimation. We considered empirical p-values from 100000
sample permutations as the reference of truth, against which we compared asymptotic
p-values and empirical p-values from 500 sample permutations. Our analysis is based on
log p-values.
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4.1 Asymptotic and empirical p-values for mGSZ scores

The resolution of empirical p-values depends on the number of permutations (Figure 2).
As expected, p-values obtained from Gaussian model fitted to mGSZ scores failed miser-
ably. P-values obtained from extreme value (EVD) and general extreme value (GEVD)
distributions fitted to mGSZ scores were the best estimates (Figure 2).

Figure 2: Correlation of empirical and asymptotic p-values (EVD, GEVD, GAMMA and
NORM ) (X-axis) estimated from 500 sample permutations with the reference of truth
(Y-axis). The reference of truth corresponds to empirical p-values estimated from 100000
sample permutations.
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4.2 Asymptotic and empirical p-values for mGSA scores

The best p-values for mGSA scores were the asymptotic p-values estimated from extreme
value distribution (EVD), general extreme value distribution (GEVD) and gamma distri-
bution (GAMMA) fitted to mGSA scores (Figure 3). Empirical p-values and asymptotic
p-values obtained from Gaussian distribution fitted to mGSA scores had the worst corre-
lation with the reference of truth (Figure 3).

Figure 3: Correlation of empirical and asymptotic p-values (EVD, GEVD, GAMMA and
NORM) (X-axis) estimated from 500 sample permutations with the reference of truth
(Y-axis). The reference of truth corresponds to empirical p-values estimated from 100000
sample permutations.
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4.3 Asymptotic and empirical p-values for mAllez scores

Asymptotic p-values for mAllez scores were estimated from Gaussian distribution fitted
to mAllez scores. Here too, empirical p-value estimated with 500 sample permutations
had the worst correlation with the reference of truth (Figure 4).

Figure 4: Correlation of empirical and asymptotic p-values (NORM) (X-axis) estimated
from 500 sample permutations with the reference of truth (Y-axis). The reference of truth
corresponds to empirical p-values estimated from 100000 sample permutations.
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4.4 Asymptotic and empirical p-values for SUM scores

Empirical and asymptotic p-value evaluation for SUM scores showed similar results as
that of mAllez (see Figure 5).

Figure 5: Correlation of empirical and asymptotic p-values (NORM) (X-axis) estimated
from 500 sample permutations with the reference of truth (Y-axis). The reference of truth
corresponds to empirical p-values estimated from 100000 sample permutations.

5 Evaluation of the p-value calculation methods with
gender data

Null distribution of gene set scores from permuted data is mostly dependent on gene set
scoring functions. In this section, we show the evaluation of asymptotic and empirical
methods of p-value estimation with gender data.

5.1 Asymptotic and empirical p-values for mGSZ scores

P-values estimated with EVD and GEVD still remain the best p-values in gender data as
well (Figure 6). However, in contrast to the results from p53 data, empirical p-values are
equally good as asymptotic p-values calculated with EVD and GEVD (Figure 6). This
is because gender data has relatively lower biological signal as compared to p53 data and
thus empirical p-values reach the finest resolution already with 500 sample permutations.
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Figure 6: Correlation of empirical and asymptotic p-values (EVD, GEVD, GAMMA and
NORM ) (X-axis) estimated from 500 sample permutations with the reference of truth
(Y-axis). The reference of truth corresponds to empirical p-values estimated from 100000
sample permutations.

5.2 Asymptotic and empirical p-values for mGSA scores

The results are similar to that of p53 data except that the empirical p-values show equally
good correlation with the reference of truth for the reason described in Section 5.1 (Figure
7).

Figure 7: Correlation of empirical and asymptotic p-values (EVD, GEVD, GAMMA and
NORM) (X-axis) estimated from 500 sample permutations with the reference of truth
(Y-axis). The reference of truth corresponds to empirical p-values estimated from 100000
sample permutations.
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5.3 Asymptotic and empirical p-values for mAllez scores

The results are similar to that of p53 data except that the empirical p-values show equally
good correlation with the reference of truth for the reason described in Section 5.1 (Figure
8).

Figure 8: Correlation of empirical and asymptotic p-values (NORM) (X-axis) estimated
from 500 sample permutations with the reference of truth (Y-axis). The reference of truth
corresponds to empirical p-values estimated from 100000 sample permutations.

5.4 Asymptotic and empirical p-values for SUM scores

The results are similar to that of p53 data except that the empirical p-values show equally
good correlation with the reference of truth for the reason described in Section 5.1 (Figure
9).

5.5 Asymptotic approximation of empirical null distribution with
gender data
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Table 1: Asymptotic distribution models fitted on the empirical null distribution gener-
ated by the compared methods with gender data and their results. Scores not meeting
the criteria for optimal model (Section 2.5.1 from the main article) are highlight.

Methods Models mse mse(subset) cor cor(subset)

mGSZ EVD 0.002 0.03 0.99 0.99

GEVD 0.002 0.03 0.99 0.99

GAMMA 0.003 0.05 0.99 0.98

NORM 0.03 0.73 0.96 0.99

mGSA EVD 0.002 0.03 0.99 0.99

GEVD 0.001 0.02 0.99 0.98

GAMMA 0.001 0.02 0.99 0.97

NORM 0.03 0.87 0.94 0.96

mAllez NORM 0.0007 0.002 0.99 0.98

WRS NORM 0.01 0.07 0.96 0.95

SS GAMMA 0.008 0.3 0.97 0.95

SUM NORM 0.0005 0.002 0.99 0.98

KS _ _ _ _ _

wKS _ _ _ _ _
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Figure 9: Correlation of empirical and asymptotic p-values (NORM) (X-axis) estimated
from 500 sample permutations with the reference of truth (Y-axis). The reference of truth
corresponds to empirical p-values estimated from 100000 sample permutations.

6 Comparison of stability of gene set scores with gender
data

In this section, we present the comparison of stability of the gene set scores from mGSZ,
KS and wKS with gender data. Similar to that of p53 data, here too the stability plot for
mGSZ, based permuted data shows that middle part of the seven percentiles of the gene
set score profiles of the permuted data stay quite stable across gene list positions (Figure
10a). The maximum percentile shows smaller deviation from zero than the minimum per-
centile (Figure 10a). This indicates that gene set scores coming from under-representation
show stronger signal than those coming from over-representation. The minimum of the
gene set score profile from original data comes quite early in the gene list, pointing that
gene set members occur near the bottom of the ordered gene list (Figure 10a). Notice
that the separation between gene set score profile from original data and permuted data
is quite clear across different threshold positions (Figure 10a). The importance of our
visualization is more highlighted when we analyze the behavior of wKS and KS with the
same gene expression dataset and the same gene set. For wKS the gene set score profiles
from permuted data show strange behavior with S shaped profile (Figure 10b) and for
KS the middle area shows strong variation (Figure 10c). The separation between gene set
score profiles from permuted data and original data is very weak in both wKS and KS
(Figure 10c). This comparison is based on the strongest gene set reported by wKS. Note
that the mGSZ software reports absolute values for gene set scores.
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(a) mGSZ (b) wKS

(c) KS

Figure 10: Visualization of scoring function profiles for mGSZ, wKS and KS for gene set
"XINACT MERGED" in gender data. Figure also shows 7 percentiles (0, 10, 25, 50, 75,
90, 100) of gene set score profiles obtained from 1000 sample permutation data. Notice the
clear separation of the gene set score profiles from original data with those from permuted
data and stability of seven percentiles of gene set score profiles from permuted data in
case of GSZ-score.

7 Calculation of prior variance in Gene Set Z-score
function

For the calculation of prior variance (k) in Equation 2 of the main article, we use; 1) the
median of the variance estimates obtained with the analyzed gene set across the whole
gene list and multiply it with a weight, w2 (0 ≤ w2 ≤ 1), and 2) the median of the
variance estimates obtained with the gene set of size 10 across the whole gene list and
multiply it with a weight, w1 (0 ≤ w1 ≤ 1). Prior variance is then obtained by summing
the weighted variance medians. The selection of the reference class size and the values
for w1 and w2 were based on the original paper by Törönen et al., 2009.
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8 Similarity of the GSZ and GSA scoring functions
For the calculation of max-mean statistics in the GSA method, the differential expression
test scores are summed and divided by the size of the whole gene set in both positively
and negatively regulated parts of the ordered gene list. The maximum of the absolute
values of the two parts is selected as the max-mean statistics (Equation 14).

MaxMean = max

abs
 ∑

Xi>0
i∈GeneSet

Xi

 , abs

 ∑
Xi<0

i∈GeneSet

Xi


 /NGeneSet (14)

Where, Xi is the differential expression test score for ith gene of the analyzed gene set
and NGeneSet is the total number of genes in the analyzed gene set.

GSZ equation uses non-member genes (genes not belonging to the analyzed gene set)
in the calculation. However, the result from the list of non-member genes is essentially the
result from the list of member genes subtracted from the result from the whole gene list.
Thus, the DiffN estimate of GSZ (Equation 1 in the main article) is a function of sum
in MaxMean score function (Equation 14). Both methods focus only on one (either posi-
tively or negatively regulated) part of the gene list. The differences are : 1) the mean and
standard deviation estimates for each half in GSA are obtained via gene permutations,
whereas in GSZ, they are obtained by estimates from the actual data, 2) Unlike GSA,
GSZ scoring function is used to test many threshold positions. However the function can
be modified by fixing the threshold position.
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9 Log p-values of the top gene sets
The empirical p-values of the top 50 gene sets reported by the compared methods in p53
and gender datasets calculated from 100000 sample permutations were compared. The
comparison was considered inconclusive as the ordering of the methods varied between
datasets. We tested the sensitivity of the methods to false positive signals in the main
article. The p-value analysis should be complemented by the sensitivity test of the meth-
ods to false positive signals. Therefore, we present the results of the p-value analysis in
the supplementary.

9.1 Log p-values of the top gene sets in p53 dataset

SS and mGSZ are the best performing methods on the upper region of the ordered gene
list (OGL) (Figure 11a). However, on the lower region of the list, SS is the best method
followed by mGSZ, SUM and mAllez (Figure 11a).

9.2 Log p-values of the top gene sets in gender dataset

Unlike the results from p53 dataset, the best methods on the upper region of the OGL
of gender dataset are mGSZ and mAllez (Figure 11b). WRS and mAllez report the best
p-values on the lower region of the list (Figure 11b). Surprisingly, SS reports the weakest
p-values in the gender dataset (Figure 11b).
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Figure 11: Empirical log p-values for the top 50 gene sets estimated by each of the
compared methods in p53 and gender dataset.
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10 False positive signal test with p53 data
In addition to the leukemia dataset, the compared methods were also evaluated with p53
dataset and GO gene sets for false positive signal test. Here, we selected GO gene sets
instead of curated gene sets from Subramanian et al., 2005 because GO gene sets have
wide range of sizes. This allows to test the stability of the methods over wide range of gene
sets sizes. Unlike with the leukemia dataset, even though mGSZ, GSA, weighted KS and
unweighted KS are more conservative, the difference to the other methods is significantly
small (Figure 12).

Figure 12: Empirical log p-values for GO gene sets estimated by the compared methods
on randomized p53 dataset.

11 Comparison of mGSZ, mGSA and mAllez with pro-
gram packages

False positive signal test shows that mGSZ and most other methods show quite similar
behavior (Figure 13). While CAMERA is the most conservative, ROAST shows strong
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noise signal (Figure 13). The result points out a major difference between competitive
and self-contained gene set analysis methods. Self-contained gene set analysis methods
calculate the gene set scores without considering the genes other than member genes.
Thus, in a signal rich dataset like leukemia dataset most of the null gene sets are reported
as significant by self-contained gene set analysis method like ROAST.

Figure 13: Comparison of mGSZ, mGSA and mAllez with the program packages with
randomized gene sets.

Based on the detection of the relevant gene sets from p53 and gender data by mGSZ,
mGSA, mAllez and the program packages, mGSZ is clearly the best method (Figure 14a
and 14b). Moreover, mGSA and mAllez shows improved performance as compared to
GSA and Allez (Figure 14a and 14b).

mGSZ reports the best p-values (based on resolution) with p53 dataset for the top
50 gene sets as compared to the other methods (Figure 15a). However, in case of gender
dataset, mGSZ reports the best p-values for the upper region of the gene list and then
slightly lags behind mGSA, mAllez and ROAST in the lower region of the gene list (Figure
15b).
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(a) P53 data (b) Gender data

Figure 14: Relevant gene sets identified by the compared methods. Figures represent
cumulative count of biologically relevant gene sets (Tables 4 and 5) over the ranked list
of top 50 gene sets in case of the p53 data and top 20 gene sets in case of the gender data
reported by each of the compared methods. mGSZ (black) shows the best performance.

(a) P53 data (b) Gender data

Figure 15: Log p-values for the top 50 gene sets estimated by each of the compared
methods in p53 and gender datasets.

12 Evaluation of mGSZ on dataset with small sample
size

In this section, we present the results obtained by implementing mGSZpermutaion and
mGSZrotation on the simulated dataset described in Section 2.7 of the main article. In
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addition, mGSZpermutation and mGSZrotation were also implemented on a simulated
dataset with slightly higher signal achieved by adding the constant 1.5, to see if the
results vary with varying signals in datasets. The evaluation was based on comparison of
log p-values and identification of the positive gene sets by the two methods. In both the
comparisons no significant difference was observed (Figures 16 and 17).

(a) Simulated data with lower signal (b) Simulated data with higher signal

Figure 16: Asymptotic log p-values for the gene sets in the simulated datasets estimated
by mGSZrotation and mGSZpermutation.

(a) Simulated data with lower signal (b) Simulated data with higher signal

Figure 17: Positive gene sets identified by mGSZrotation and mGSZpermutation. Figures
represent cumulative count of positive gene sets over the ranked list of the top 50 gene
sets reported by each of the compared methods.
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13 Top gene sets identified by standard Allez and mAllez

Table 2: Top 10 gene sets reported by standard Allez and mAllez from p53 dataset.
Standard Allez lacks sample permutation and reports z-score. Empirical and asymptotic
p-values for mAllez scores were calculated from 1000 sample permutations.

Allez mAllez

Classes Z-score Classes Empirical p-value Asymptotic p-value

P53_UP 5.15 p53Pathway 0.001 0.00009

HTERT_UP 5.03 hsp27Pathway 0.001 0.0002

p53Pathway 4.55 p53hypoxiaPathway 0.001 0.0003

GLUT_UP 4.46 P53_UP 0.001 0.0003

rasPathway 4.19 rasPathway 0.001 0.0003

GPCRs_Class_A_Rhodopsin-like 4.01 radiation_sensitivity 0.001 0.0004

HUMAN_CD34_ENRICHED_TF_JP 3.77 SA_DAG1 0.001 0.0009

hsp27Pathway 3.72 ngfPathway 0.001 0.001

INSULIN_2F_UP 3.67 il4Pathway 0.002 0.003

LEU_DOWN 3.67 fmlpPathway 0.002 0.003
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14 Top gene sets identified by standard GSA and mGSA

Table 3: Gene sets with p-value less than 0.01 reported by GSA and mGSA from p53
dataset with 1000 sample permutations. GSA calculates empirical p-value, whereas mGSA
calculates asymptotic p-value.

GSA mGSA

Classes Empirical p-value Classes Empirical p-value Asymptotic p-value

Hsp27Pathway 0 p53Pathway 0.001 0.0001

P53hypoxiaPathway 0 hsp27Pathway 0.001 0.0003

P53Pathway 0 radiation_sensitivity 0.001 0.0003

SA_G1_AND_S_PHASES 0 P53hypoxiaPathway 0.001 0.0005

fmlppathway 0 P53_UP 0.001 0.0006

rasPathway 0 SA_G1_AND_S1_PHASES 0.001 0.001

radiation_sensitivity 0.001 fmlppathway 0.001 0.002

P53_UP 0.001 SA_DAG1 0.002 0.0007

SA_DAG1 0.002 rasPathway 0.002 0.001

BadPathway 0.003 BadPathway 0.004 0.009

ngfPathway 0.003

MAPK_Cascade 0.006

il4Pathway 0.009

MAP00790_Folate_bios 0.009

15 List of gene sets that are strongly relevant to p53
activity

Top fifty gene sets reported by each of the compared methods were pooled. Each of the
pooled gene sets were then analyzed separately for their relevance to p53 activity. A total
of forty gene sets highly relevant to p53 activity were selected as relevant gene sets for
p53 data.
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Table 4: Gene sets and their relevance to p53 gene activity

Gene sets Relavance to P53 Gene sets Relavance to P53

p53hypoxiaPathway
Hypoxia induces p53
mediated apoptosis b Ceramide Pathway Apoptosis b

p53Pathway Pathway b Ca_nf_at_signaling Apoptosis b

radiation_sensitivity
Mutation in p53 affects
radiation sensitivity b Hivnef pathway Apoptosis b

SA_PROGRAMMED
_CELL_DEATH Apoptosis b ras pathway Regulates cell growth,

differentiation and death
b

P53_UP Apoptosis b ngf pathway Deacetylation of p53 b

hsp27Pathway
Modulation/regulation
of p53 signalling/activity
(O’Callaghan-Sunol et al., 2007)

il4 pathway p53 suppresses IL-4 b

atmPathway Pathway member b ST-Interleukin-4-pathway Cytokins b

p53 signalling Pathway member b ccr3 pathway Apoptosis b

chemical pathway Pathway member b cxcr4 pathway Apoptosis b

Cr. death Pathway member b erk pathway Apoptosis (Cagnol and Chambard, 2010)

DNA damage signalling Pathway member b MAPK cascade Activated by p53 b

G1 pathway Pathway member b ck1 pathway Phosphorylates p53 (Alsheich-Bartok et al., 2008)

G2 pathway Pathway member b igf1 pathway Regulated by p53 (Feng, 2010)

ST FAS signalling Pathway Pathway member b bcr pathway Apoptosis (Kroesen et al., 2001)

Cell cycle pathway Pathway member b MAP00790_folate
_biosynthesis

Folate stress induces
p53 mediated apoptosis (Hoeferlin et al., 2013)

Drug resistance and
metabolism

Pathway member b ST_Phosphoinositide
_3_kinase_pathway p53 mediated apoptosis (Cooper and Nayak, 2012)

Breast cancer
estrogen signalling Pathway member b mapk pathway Interacts with p53 b

BAD Pathway Apoptosis b SA_G2_AND_M_PHASES Cell cycle b

Mitochondria pathway Apoptosis b SA_G1_AND_S_PHASES Cell cycle b

bcl2family and reg. network Apoptosis b SA_DAG1 Regulates cell growth
and apoptosis (Wright and McMaster, 2002)

aManually curated
bManually curated
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16 List of gene sets that are strongly relevant to gender
Top twenty gene sets reported by each of the compared methods were pooled. Each of
the pooled gene sets were then analyzed separately for their relevance to gender. A total
of ten gene sets highly relevant to gender were selected as relevant gene sets for gender
data.

Table 5: Gene sets and their relevance to gender

Gene sets Relavance to gender

XINACT_MERGED Female specific a

TESTIS_GENES_FROM_XHX_AND_NETAFFX Male specific a

GNF_FEMALE_GENES Female specific a

aifPathway Triggers cell death in males (Du et al., 2004)

SIG_Regulation_of_the_actin_cytoskeleton_by_Rho_GTPases Gender specific regulation a

tercPathway Telomere length varies with gender (Barrett and Richardson, 2011)

NFKB_REDUCED Variation with gender (Vina et al., 2011)

caspase_activity Variation with gender (Liu et al., 2009)

MAP00252_Alanine_and_aspartate_metabolism Variation with gender (Mera et al., 2008)

MAP00910_Nitrogen_metabolism Variation with gender (Cheney et al., 1987)

aManually curated
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