LOCP: Methods

Let X be a vector of ones and zeros, where ones stand for pilus related sequences and zeros stand for sequences not related to pili. Let N denote the size of X and let K denote the total number of ones in X . Let w , window, denote a subset of consecutive entries in X , let n denote the size of w , let k denote the total number of ones in w and let max gap denote the maximum number of consecutive zeros in w . Let as define a subset of all possible windows by:
$W(X, M)=\left\{w \mid w_{-}\right.$starts _ and _ends_with_1, max $\left.\operatorname{gap}(w) \leq M\right\}$
where M is a user defined variable (by default equal to five).
For each w in W(X,M), LOCP computes the P-value, $\mathrm{P}(\mathrm{w})$ using a one-tailed Fisher's Exact Test:

$$
\begin{equation*}
P(w)=\sum_{k^{\prime}=k}^{n}\binom{K}{k^{\prime}}\binom{N-K}{n-k^{\prime}} /\binom{N}{n} \tag{1}
\end{equation*}
$$

To estimate P_adj, LOCP runs 1000 simulation rounds. On each simulation round i ($1 \leq \mathrm{i} \leq 1000$), LOCP samples a random permutation of X, denoted X_{i}. After sampling X_{i}, LOCP calculates the P -value for each w in $\mathrm{W}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{M}\right)$ using (1). Then, for each simulation i LOCP determines

$$
P_{i, \text { min }}=\min \left(\left\{P_{i}(w) \mid w \in W\left(X_{i}, M\right)\right\}\right)
$$

Finally, $\mathrm{P}_{\mathrm{adj}}(\mathrm{w})$ is estimated as the fraction of these $\mathrm{P}_{\mathrm{i}, \mathrm{min}}$ that are less than or equal to $\mathrm{P}(\mathrm{w})$.

